TSAR — a new graph-theoretical approach to computational modeling of ionization properties of proteins

Oleg Stroganov¹, Fedor Novikov¹, Viktor Stroylov¹, Val Kulkov² and **Ghermes Chilov**¹

¹ MolTech Ltd, Russian Federation, ² BioMolTech Corp, Canada

ACS 241st Meeting, Anaheim, USA

27 March 2011

Knowing state space of macromolecule is crucial for understanding its properties

- Protein structure, ionization properties, stability
- Protein-ligand and protein-protein binding
- However... the number of different conformational states is astronomic even for small proteins
 - Protein of 150 residues, 20 ionizable residues
 - 10 conformations/residue
 - totally **10¹⁵⁶** conformational states
 - **10**⁶ distinct charged states

Current approaches to explore state space of molecular systems

Ê₃

t₃

 t_2

 E_2

E₁

- Dynamical approaches (MD...)
- Stochastic approaches (Monte Carlo...) \bullet

What about direct enumeration of system states?

- Direct enumeration of system states
 - allows global sampling of system state space with a given (space) resolution
 - is practically limited to 10⁶-10¹² (molecular mechanical) energy evaluations

Novel graph-theoretical approach for multistate calculations

Account of a system topology allows to make enumeration of system states optimal

Actual number of terms in statistical sum:

 N^2

 N^3

 N^5

Thermodynamic Sampling of Amino acid Residues

 By accounting topology of a graph describing molecular system a graph of N nodes each having M states (complexity M^N) is transformed to the clique of n nodes (n<<N) with complexity Mⁿ

חו פחס	Complexity , 10 [^]					
	Straightforward	TSAR				
1amm	5319	153				
1bd8	4097	120				
1c9o	3693	106				
1ctj	1974	60				
1eca	3722	110				
1igd	1728	50				
1nar	9228	264				
1qlw	17569	527				
2cpl	4608	129				
5pti	1937	56				

BPTI (5pti)

TSAR: approximations

- Deletion of energetically unfavorable states of graph nodes (side-chains, ligand, etc)
- Deletion of graph edges (bonds) which energy varies negligibly
- Additional sampling for "unstable" graph nodes
- Ability to discard all states of a system less energetically favorable than a given state

חו פחס	Complexity , 10 ^x					
FUDID	Straightforward	TSAR				
1amm	622	6.0				
1bd8	490	6.0				
1c9o	418	5.9				
1ctj	250	6.1				
1eca	445	5.8				
1igd	193	6.1				
1nar	1031	5.9				
1qlw	2047	6.1				
2cpl	563	6.0				
5pti	220	6.1				

BPTI (5pti)

TSAR: application to protein ionization properties

- Graph nodes
 - Side-chains, water molecules
- Node states
 - Conformations, ionization forms
- Edges
 - Nodes within 4 Å from each other interact

How TSAR works

E147

E154 🗍

Y39

106 Y22 R106

Q113/

complexity **10**¹⁶⁶ 2.4 edges/node Final graph of ribonuclease H, complexity **10**⁶ 0,54 edges/node

Maximum clique size = 8

V155

D10

D134

R138

S121

Q80

Q76

T43

T92

E131 [△]

K122

E119

K3 M1

E135

T34

H127

R27

Δ-

S68 🛛

N130

Q152

A №100

R46

K60

D102

TSAR: application to model protein ionization properties

Energy calculations

- Simplified molecular mechanical functional:
 - Steric clashes

$$k_{clashes} \sum_{i,j} E_{clashes,ij}(r_{ij})$$

• Hydrogen bonds
$$k_{hbonds} \sum_{i,j} k_{ij} f_H f_{LP} E_{LJ,ij}(r_{ij}) + k_{penalty} \min(0; 2N_c - N_{hb})$$

• Electrostatic interactions

$$k_{elec} \sum_{i,j} \frac{q_i q_j}{R'_{ij}} \frac{1}{\varepsilon(R'_{ij})}$$

• Interaction with metal ions

$$k_{metal} \sum_{i,j} k_{ij} f_{Me} f_{LP} E_{LJ,ij}(r_{ij})$$

$$E_{State} = \sum_{i} E_{i} + \sum_{i,j} E_{i,j}$$

Test set of protein pKa values

484 pKa values from 96 proteins

pH*	Asp	Glu	His	Tyr	Lys	TerC	TerN
1-2	2						
2-3	33	5	1			6	
3-4	75	34				8	
5-6	17	74	3				
6-7	1	5	30				1
7-8	2	4	60	1			1
8-9		2	23				6
9-10		2	5	3			
10-11			3	1	6		1
11-12				5	37		
12-13				8	18		
13-14				1			
All	130	126	125	19	61	14	9

* pH interval in which pKa of amino acids lie

Computational performance of TSAR

Accuracy of pKa calculations with TSAR

		R ²	% of cases with pKa _{exp} - pKa _{calc} >				
	KIVISD		1.0	2.0			
Asp	0.54 (0.65)	0.48	3 (12)	0 (2)			
Glu	0.70 (0.70)	0.52	15 (17)	1 (6)			
His	0.64 (0.70)	0.62	9 (30)	1 (5)			
Tyr	0.47 (0.46)	0.90	0 (37)	0 (16)			
Lys	0.46 (0.45)	0.37	0 (8)	0 (0)			
TerC	0.19 (0.23)	0.86	0 (0)	0 (0)			
TerN	0.45 (0.51)	0.83	0 (22)	0 (0)			

The influence of sampling on the accuracy of pKa calculations

	D 2			% c	% of cases with pKa _{exp} - pKa _{calc} >					
		K-			1.0			2.0		
		Ι	II		Ι	II		Ι	11	
Asp	0.48	(0.30)	(0.41)	3	(9)	(8)	0	(0)	(0)	
Glu	0.52	(0.53)	(0.53)	15	(15)	(16)	1	(2)	(2)	
His	0.62	(0.58)	(0.59)	9	(12)	(11)	1	(1)	(1)	
Tyr	0.90	(0.92)	(0.92)	0	(0)	(0)	0	(0)	(0)	
Lys	0.37	(0.40)	(0.40)	0	(2)	(3)	0	(0)	(0)	
TerC	0.86	(0.79)	(0.85)	0	(0)	(0)	0	(0)	(0)	
TerN	0.83	(0.77)	(0.83)	0	(0)	(0)	0	(0)	(0)	

 $\rm I$ — the number of states per distinct ionized form of amino acid is reduced to 2 $\rm II$ — additional sampling of residues is switched off

The contributions of electrostatics and H-bonds

		D2		% of cases with pKa _{exp} - pKa _{calc} >						
		K-			1.0			2.0		
		Ι	II		I	II				
Asp	0.48	(0.35)	(0.18)	3	(12)	(12)	0	(0)	(2)	
Glu	0.52	(0.52)	(0.16)	15	(15)	(15)	1	(2)	(5)	
His	0.62	(0.54)	(0.35)	9	(17)	(19)	1	(1)	(4)	
Tyr	0.90	(0.90)	(0.41)	0	(0)	(26)	0	(0)	(16)	
Lys	0.37	(0.16)	(0.28)	0	(10)	(2)	0	(0)	(0)	
TerC	0.86	(0.77)	(0.77)	0	(0)	(36)	0	(0)	(0)	
TerN	0.83	(0.81)	(0.86)	0	(0)	(0)	0	(0)	(0)	

I — electrostatic interactions are switched off

II — H-bonds are switched off

Importance of sampling H-bond networks

Current limitations of TSAR and perspectives

Limitations:

- Fixed protein backbone
- Computational limitations on maximum clique size and number of node states

Novel applications:

- Protein structure modeling
- Protein design
- Fully flexible protein-ligand docking with explicit water treatment
- Free energy calculations